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RELAXATION IN A LOW-PERMEABILITY POROUS MATERIAL 

O. Yu. Dinariev and O. V. Nikolaev UDC 532.546 

Relaxation in low-permeability porous materials has been examined for nonstation- 
ary infiltration. 

Darcy's law applies [i] to steady-state motion through an isotropic porous material under 
a low pressure gradient, which relates the flow speed u to the pressure p and the gravitational 
potential ~: 

k u -  vO, O = p §  (1) 

(1)  must be m od i f i ed  on a r e l a x a t i o n  model f o r  n o n s t a t i o n a r y  i n f i l t r a t i o n  [2, 3] .  I f  
u and G a r e  v a r i a b l e  in  t ime ,  (1) i s  r e p l a c e d  f o r  a homogeneous i s o t r o p i c  porous  medium by 

u (t) - k + ~ K (t - -  tl) vG (tl) dr1, (2 )  

in which the  k e r n e l  K( t )  i s  independen t  of  the  s p a t i a l  c o o r d i n a t e s  and s a t i s f i e s  the  con- 
d i t i o n s :  K = K(t) is a function of time with dimension 1/time, possibly generalized, 

~ K(~)dl= I, and the support for K = K(t) by virtue of causality lies on the [0, + ~) semi- 

axls. 

If one performs a Fourier transformation with respect to t for the functions in (Z), 
one gets 

u (~) - k ~ (~) vO (~), ( 3 )  

in  which t he  complex f u n c t i o n  K(~) i s  such t h a t  

R(0) - -  1, K(~) -- ~(--~) .  (4)  

For smal l  m, the  s i m p l e s t  approx ima t ion  f o r  K(m) compa t ib le  wi th  (4)  i s  t he  ! inca : :  one: 
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(~) = 1 + i t s ,  ( 5 )  

in which �9 is a real function with the dimensions of time. The inverse Fourier transforma- 
tion from (3) on the basis of (5) gives the following particular form for (2): 

u - -  - -  1 - l -  V G ( 6 )  - ~  �9 

Consider a horizontal cylindrical specimen having length L, into which liquid begins 
to be pumped from one end with a mass flow rate per unit area of q. At the other end, a con- 
stant pressure P0 is maintained. We use (6) to examine the pressure at the input. 

The spatial coordinate x is reckoned along the specimen and varies over the segment [0, 
L]. The continuity 8mp/3t + 8pu/Sx = 0 and (6) for a weakly compressible liquid give 

Op kE ( 1 +  O)  02p (7) 

O--f = m~ . Ox~ 
The boundary and initial conditions are 

- - p ( 1  + ' ~ @ )  k~ oxOP x=o = q' ( 8 )  

PI~L = Po, ( 9 ) 

Pb=o = Po. ( 10 )  

We put • ==q~/pk., and then (8) and (i0) give an expression for -~.~.i as a 
X~O 

time function: 

= - - c z  1 - - e x p  - -  
Ox x=O (11 )  

To solve (7) with (9), (I0), and (ii), we define an auxiliary function v = v(t, x) from 

= po--~, [1- -exp (----~--t / ] (x--L) "-l--v(t, x), (12) p(t, X) 
L t "r, i . l  

We substitute (12) into (7), (9), (i0), and (ii) to get the following equation for v = 
v(t, x) : 

Ot = •  I +  - - ~ - ) - - ~ x  ~ + ~ ( x - - L ) e x p a ;  - -  ' ( 13 )  

Ov =0, vlx=L = O" vl,=o = 0, ~ x=0 

Let A = 82/8x 2 .be ~ self-conjugate operator acting in the space X of functions integrable 
Ov 

in square in the segment [0, L] and satisfying ~xix=0=0 , Vix=L=O. Then (13) gives a linear 

inhomogeneous Cauchy problem in the linear space X: 

Ovat ---- Bv + ~-~- (1-- • L)exp ( - - + )  ' 

vlt=o = 0, B = xA (.1 - -  • -1. 

(14) 

A simple solution applies for (14): 

v = ~ [exp( tB)  
[ 

and then (12) gives p as: 

- -  exp - -  - - ~  J (x - -  L), 

P = Po - -  ~ (x - -  L) + ~ exp (tB)(x - -  L). 

(15) shows that the pressure at x = 0 is 

P = Po + ~L + o~ X C,,f,~ (0) exp (tb~), 
n = 0  

(15) 
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Fig. i. Apparatus. 

TABLE i. Nonstationary Liquid Infiltration 

Liquid !q, 10 -s  P, MPa /~' lO-*S 
:m 3 /sec m2 ~'. see ~0. see r. sec 

Acetone 
Acetone 
Acetone 
Toluene 
Toluene 
Toluene 
Benzene 
Benzene 
Benzene 

6,67 
3,40 
0,22 
0,083 
1,67 
3,33 
O, 083 
2,05 
2,76 

19,90 
16,25 
12,65 
12,58 
15,85 
19,40 
12,65 
18,05 
20, O5 

13,6 
13,5 
13,6 
13,0 
13,3 
13,1 
t1,1 
l l ,1 
11,I 

91 
89 
90 

104 
104 
104 

666 
614 
604 
700 
760 
800 

1010 
1030 
1090 

622 
570 
560 
609 
671 
710 
906 
926 
986 

in which fn = fn (x), n = 0, 1 ..... are normalized eigenfunctions for A corresponding to cer- 
tain eigenvalues In, while b n = a%n/(l--xT~) are the eigenvalues for the operator B, and the 

coefficients C n arise in the expansion (z--L)= ~Cnfn(x). The spectrum hn, n = 0, 1 .... , 

n=O / ~  / 2L-2 ' 
f o r  A i s  f o u n d  i n  a s t a n d a r d  f a s h i o n  [4 ]  a n d  i s  %n=--~+an| n = - O ,  I . . . .  , so there 

is a relaxation spectrum for the pressure at x = 0 with characteristic times 

T. = -- I/b,, = �9 § 

The principal relaxation time is 

4L 2 

• -}- 2n) 2 
, n = O ,  1 . . . .  

= ~-{-T', ( 1 6 )  

in which ~'=4L2/z~ 2, and contains the relaxation time in a particle T together with a ~:ompo- 
nent T' that can be calculated if k and m are known from independent experiments. Then one 
determines T0 by experiment to derive the characteristic time for the internal relaxation. 

This method has been used in a series of experiments with the Fig. 1 apparatus. [She 
cylinder 2 consists of packed crushed quartz sand, L = 5 m, diameter d = 2.6"10 -2 m, porosity 
m = 0.222. At one end, the measurement press I is connected, whose piston is displaced at 
a set speed. The fine-regulation valve 3 at the exit maintains a constant pressure by gradu- 
ally draining the liquid. The liquid is forced through at a consant flow rate Q, and the 
control valve maintains a constant P0, while the varying pressure p(t) in the inlet lithe is 
recorded by the gauge 4. When the pressure ceases to rise, the stationary state has been 
attained, with the permeability then measured in a standard fashion there. One determines 
c 0 by processing p(t). 

We used acetone, toluene, and benzene with various mean pressures p. Table 1 gives the 
conditions. The T were calculated from (16). We took for acetone E = 1.22"109 Pa, p = 3.25 x 
10 -4 Pa-sec, for toluene E = i.ii.10 s Pa, p = 5.84"10 -4 Pa.sec, and for benzene E = 1.27"109 
Pa, p = 6.52-10 -4 Pa'sec. 

The measurements always gave To >> T', so the relaxation cannot be explained by the (i) 
model. 

Charnyi [5] pointed out that there can be increased pressure permeability in nonstation- 
ary flow because of residual gas. Also, the effect may be due to small parasitic volumes 
in the apparatus. Therefore, provision was made for outgassing the liquid and evacuating the 
entire system before liquid saturation; gas bubble effects were thereby excluded. In the 
interpretation, we also considered mechanical relaxation in the equipment due to the changing 
pressure: in the seals, elastic components, etc. to estimate the latter, we made tests which 
showed that relaxation there was unimportant in the system without the porous medium. 
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Darcy's law does not apply to nonstationary infiltration into a low-permeability porous 
material, and (6) must be used. The relaxation time is a characteristic of the porous medium 
and fluid and is also dependent on the pressure. The relaxation times usually considered 
in the theory [2, 3] are ~i03 sec, and we have demonstrated for the first time in a labora- 
tory experiment that there is relaxation times of 102-10 ~ sec. 

NOTATION 

p and P0, densities; p and P0, pressures; E, bulk modulus of elasticity for the liquid; 
u, infiltration speed; k, permeability; m, porosity; p, viscosity; • , pressure conductivity; 
~, gravitational potential; K(t !, relaxation kernel; t, time; m, complex variable, argument 
in the Fourier transformation; K = K(m), Fourier transformation for the relaxation kernel; 
fn, normalized eigenfunctions for operator A; A n, spectrum for A; A, self-conjugate operator 
in space X; X, space of functions integrable in squares; B, operator; bn, eigenvalues of B; 
C n, series expansion coefficients; q, mass flow rate per unit area of porous medium; Q, volume 
flow rate; v, auxiliary function defined by (12); ~, Tn, ~', relaxation times; L, specimen 
length; d, diameter. 

LITERATURE CITED 

i. G.I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Theory of Nonstationary Liquid and Gas 
Infiltration [in Russian], Moscow (1972). 

2. Yuo M. Molokovich, N. N. Neprimerov, V. I. Pikuza, and A. V. Shtanin, Relaxation-Type 
Infiltration [in Russian], Kazan' (1980). 

3. Yu. M. Molokovich, Infiltration Theory and the Mechanics of Improving Oil Recovery [in 
Russian], Moscow (1987), pp. 142-153. 

4. M.A. Naimark, Linear Differential Operators [in Russian], Moscow (1969). 
5. I.A. Charnyi, Underground Hydrogasdynamics [in Russian], Moscow (1963). 

68 


